

Sustained Exposure to the Widely Used Herbicide Atrazine: Altered Function and Loss of Neurons in Brain Monoamine Systems

V. M. Rodriguez, M. Thiruchelvam, and D.A. Cory-Slechta

doi:10.1289/ehp.7783 (available at http://dx.doi.org/)
Online 24 February 2005

Sustained Exposure to the Widely Used Herbicide Atrazine:

Altered Function and Loss of Neurons in Brain Monoamine Systems

V. M. Rodriguez, M. Thiruchelvam and D.A. Cory-Slechta¹

Environmental and Occupational Health Sciences Institute, and

Department of Environmental and Occupational Medicine, Robert Wood Johnson

Medical School, University of Medicine and Dentistry of New Jersey

170 Frelinghuysen Road

Piscataway, NJ 08854

¹Author to whom correspondence should be addressed at: Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ, 08854; phone: 732-445-0205, fax: 732-445-0131; e-mail: dcs@eohsi.rutgers.edu

Acknowledgements: Supported by grant ES10791. The authors express their

appreciation to Drs R. Reeves and M. Virgolini for their input. The authors declare that

they have no conflict of interest.

Running title: Atrazine Alters Function in Monoamine Systems

2

Keywords: Atrazine, dopamine, hypothalamus, locomotor activity, microdialysis, prefrontal cortex, striatum, substancia nigra, unbiased stereology.

Authors: V. M. Rodriguez, M. Thiruchelvam and D.A. Cory-Slechta

Abbreviations:

5-HIAA – 5 hydroxy indole acetic acid

5-HT - serotonin

ANOVA – analysis of variance

ATR – atrazine

COMT – catechol-O- methyltransferase

DA – dopamine

DBH – dopamine β-hydroxylase

DOPAC – dihydroxyphenylacetic acid

GABA – γ -aminobutyric acid

HPA – hypothalamo-pituitary-adenocortical axis

HPG – hypothalamo-pituitary-gonadal axis

HVA – homovanillic acid

LD₅₀ – median lethal dose

LH – luteinizing hormone

LOAEL – lowest observed adverse effect level

MAO – monoamine oxidase

NE – norepinephrine

NOAEL – no observed adverse effect level

PRL – prolactin

RMANOVA - repeated measures analysis of variance

SNpc – substancia nigra pars compacta

T3 – triiodothyronine

TH⁻ – tyrosine hydroxylase negative cells

TH⁺ – tyrosine hydroxylase positive cells

VTA -ventral tegmental area

Outline

- 1. Abstract
- 2. Introduction
- 3. Materials and Methods
- 4. Results
- 5. Discussion
- 6. References
- 7. Figure Legends8. Figures

ABSTRACT

The widespread use of atrazine (ATR) and its persistence in the environment has resulted in documented human exposure. Alterations in hypothalamic catecholamines have been suggested as the mechanistic basis of the toxicity of ATR to hormonal systems in females and the reproductive tract in males. Since multiple catecholamine systems are present in brain, however, ATR could have far broader effects than currently understood. Catecholaminergic systems such as the two major long-length dopaminergic (DA) tracts of the central nervous system play key roles in mediating a wide array of critical behavioral functions. This study examined the hypothesis that ATR would adversely impact these brain DA systems. Male rats chronically exposed to 5 or 10 mg/kg ATR in diet for 6 months exhibited persistent hyperactivity and altered behavioral responsivity to amphetamine. Moreover, when measured two weeks post-termination of exposure, reductions in levels of various monoamines and loss of tyrosine hydroxylase positive (TH⁺) and TH⁻ cells measured using unbiased stereology were found in both DA tracts. Acute exposures to 100 or 200 mg/kg ATR given i.p. to evaluate potential mechanisms were found to reduce both basal and potassium-evoked striatal DA release. Collectively, these studies demonstrate that ATR can produce neurotoxicity in DA systems that are critical to the mediation of movement as well as cognition and executive function. As such, ATR may be an environmental risk factor contributing to DA system disorders, underscoring the need for further investigation of its mechanism(s) of action and corresponding assessment of its associated human health risks.